229 research outputs found

    Nonlinear interaction between two heralded single photons

    Full text link
    Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.Comment: 4 pages, 4 figure

    Early sex differences in spatial skill.

    Get PDF

    Interaction of Independent Single Photons based on Integrated Nonlinear Optics

    Full text link
    Photons are ideal carriers of quantum information, as they can be easily created and can travel long distances without being affected by decoherence. For this reason, they are well suited for quantum communication. However, the interaction between single photons is negligible under most circumstances. Realising such an interaction is not only fundamentally fascinating but holds great potential for emerging technologies. It has recently been shown that even weak optical nonlinearities between single photons can be used to perform important quantum communication tasks more efficiently than methods based on linear optics, which have fundamental limitations. Nonlinear optical effects at single photon levels in atomic media have been studied and demonstrated but these are neither flexible nor compatible with quantum communication as they impose restrictions on photons' wavelengths and bandwidths. Here we use a high efficiency nonlinear waveguide to observe the sum-frequency generation between a single photon and a single-photon level coherent state from two independent sources. The use of an integrated, room-temperature device and telecom wavelengths makes this approach to photon-photon interaction well adapted to long distance quantum communication, moving quantum nonlinear optics one step further towards complex quantum networks and future applications such as device independent quantum key distribution

    Spectral compression of single photons

    Full text link
    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generation for single and entangled photons.Comment: 6 pages (4 figures) + 6 pages (3 figures

    Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming

    Get PDF
    Background: Central place foragers (CPF) rest within a central place, and theory predicts that distance of patches from this central place sets the outer limits of the foraging arena. Many marine ectothermic predators behave like CPF animals, but never stop swimming, suggesting that predators will incur ‘travelling’ costs while resting. Currently, it is unknown how these CPF predators behave or how modulation of behavior contributes to daily energy budgets. We combine acoustic telemetry, multi-sensor loggers, and hidden Markov models (HMMs) to generate ‘activity seascapes’, which combine space use with patterns of activity, for reef sharks (blacktip reef and grey reef sharks) at an unfished Pacific atoll. Results: Sharks of both species occupied a central place during the day within deeper, cooler water where they were less active, and became more active over a larger area at night in shallower water. However, video cameras on two grey reef sharks revealed foraging attempts/success occurring throughout the day, and that multiple sharks were refuging in common areas. A simple bioenergetics model for grey reef sharks predicted that diel changes in energy expenditure are primarily driven by changes in swim speed and not body temperature. Conclusions: We provide a new method for simultaneously visualizing diel space use and behavior in marine predators, which does not require the simultaneous measure of both from each animal. We show that blacktip and grey reef sharks behave as CPFs, with diel changes in activity, horizontal and vertical space use. However, aspects of their foraging behavior may differ from other predictions of traditional CPF models. In particular, for species that never stop swimming, patch foraging times may be unrelated to patch travel distance

    Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion

    Full text link
    The ability to transduce non-classical states of light from one wavelength to another is a requirement for integrating disparate quantum systems that take advantage of telecommunications-band photons for optical fiber transmission of quantum information and near-visible, stationary systems for manipulation and storage. In addition, transducing a single-photon source at 1.3 {\mu}m to visible wavelengths for detection would be integral to linear optical quantum computation due to the challenges of detection in the near-infrared. Recently, transduction at single-photon power levels has been accomplished through frequency upconversion, but it has yet to be demonstrated for a true single-photon source. Here, we transduce the triggered single-photon emission of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection (internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a photon anti-bunched second-order intensity correlation, g^(2)(t), that shows the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure

    In-situ characterization of the Hamamatsu R5912-HQE photomultiplier tubes used in the DEAP-3600 experiment

    Get PDF
    The Hamamatsu R5912-HQE photomultiplier-tube (PMT) is a novel high-quantum efficiency PMT. It is currently used in the DEAP-3600 dark matter detector and is of significant interest for future dark matter and neutrino experiments where high signal yields are needed. We report on the methods developed for in-situ characterization and monitoring of DEAP's 255 R5912-HQE PMTs. This includes a detailed discussion of typical measured single-photoelectron charge distributions, correlated noise (afterpulsing), dark noise, double, and late pulsing characteristics. The characterization is performed during the detector commissioning phase using laser light injected through a light diffusing sphere and during normal detector operation using LED light injected through optical fibres

    Quantum Communication

    Get PDF
    Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the current state of research and future directions in this new field of science with special emphasis on quantum key distribution and quantum networks.Comment: Submitted version, 8 pg (2 cols) 5 fig
    corecore